Skip to content
site-logo
  • Home
  • JavaScript
  • Machine Learning
  • C++Expand
    • C++ Programing
    • Numerical Techniques C++
    • Data Structures C++
    • C++ Programs
  • Typing Guide
  • Blogs
site-logo
Home / Numerical Techniques C++ / Gauss Elimination with Partial Pivoting C++

Gauss Elimination with Partial Pivoting C++

ByLonz Updated onSeptember 16, 2020
Numerical Techniques C++
partial pivoting
Ad
Table of contents
  1. Intro: Gauss Elimination with Partial Pivoting
  2. Why Partial Pivoting?
  3. Ex. Find the Solution of following Linear Equations using Gauss Elimination with Partial Pivoting?
    1. Step 1:- Write the given System of Equations in the form of AX=b, i.e. Matrix Form.
    2. Step 2:-  Find Augmented Matrix C = [ Ab ]
    3. Step 3:  Find the Pivot Element.
    4. Step 4: Transform into Upper Triangular Matrix Form ( Echelon ).
    5. Step 5: Using Back Substitution Find x,y,z.
  4. C++ Program Partial Pivoting

Intro: Gauss Elimination with Partial Pivoting

Gauss Elimination with Partial Pivoting is a direct method to solve the system of linear equations.

In this method, we use Partial Pivoting i.e. you have to find the pivot element which is the highest value in the first column & interchange this pivot row with the first row.

Ad

Then you can use the normal Gauss Elimination method to transform the Augmented Matrix into the upper triangular matrix.

Why Partial Pivoting?

Gauss elimination has a limitation where it fails to show exact solution.

  1. Division  by Zero
  2. Round Off Errors

So to overcome this problem we use Partial Pivoting with Gauss elimination.

Ex. Find the Solution of following Linear Equations using Gauss Elimination with Partial Pivoting?

x + y + z = 6
x – y + z = 2
2x – y + 3z = 9

Step 1:- Write the given System of Equations in the form of AX=b, i.e. Matrix Form.

Where,
A = Coefficient Matrix,
X = variables (Column Matrix),
B = constants (Column Matrix.

gauss elimination

Step 2:-  Find Augmented Matrix C = [ Ab ]

gauss elimination augmented matrix

Step 3:  Find the Pivot Element.

  1. Select Largest Absolute Value from 1st Column.
partial pivoting

2. Interchange Pivot Row with 1st Row.

partial pivoting

3. Now 1st element ( Pivot element ) should be 1.

pivoting

Step 4: Transform into Upper Triangular Matrix Form ( Echelon ).

  Echelon: Upper Triangular Matrix with Diagonal Elements 1 or Non-zero.

Ad
pivoting
  1. Repeat Step 3 in Sub Matrix. Find New Pivot Element.
pivot

2. Interchange R2 with R3 ( pivot row).

Step 5: Using Back Substitution Find x,y,z.

C++ Program Partial Pivoting

 //gauss elimination Partial Pivoting
	//techindetail.com

#include<iostream>
#include<stdio.h>
#include<conio.h>
#include<math.h>

using namespace std;

int main()
{

    int n,i,j,k,temp;
    float a[10][10],c,d[10]={0};

    cout<<"Enter No of equations ? ";
    cin>>n;
    cout<<"Coefficient of all Variables : \n";
    for(i=0;i<n;i++)
    {
        cout<<"equation: "<<i+1<< "   ";
        for(j=0;j<=n;j++)
            cin>>a[i][j];
    }
	// partial pivoting
	
    for(i=n-1;i>0;i--)        
    {
        if(a[i-1][0]<a[i][0])
            for(j=0;j<=n;j++)
            {
                c=a[i][j];
                a[i][j]=a[i-1][j];
                a[i-1][j]=c;
            }
    }
    //DISPLAY MATRIX
    
    for(i=0;i<n;i++)
    {
        for(j=0;j<=n;j++)
            printf("%6.1f",a[i][j]);
        printf("\n");
    }
    
    //changing to upper triangular matrix
    //Forward elimination process
    
    for(k=0;k<n-1;k++)
        for(i=k;i<n-1;i++)
        {
            c= (a[i+1][k]/a[k][k]) ;

            for(j=0;j<=n;j++)
                a[i+1][j]-=c*a[k][j];
        }

     // DISPLAYING UPPER TRIANGULAr MATRIX

    printf("\n\n");
    for(i=0;i<n;i++)
    {
        for(j=0;j<=n;j++)
            printf("%6.1f",a[i][j]);

        printf("\n");
	}
	
    //Backward Substitution method

    for(i=n-1;i>=0;i--)
    {
        c=0;
        for(j=i;j<=n-1;j++)
            c=c+a[i][j]*d[j];

        d[i]=(a[i][n]-c)/a[i][i];
    }

	// DISPLAY
    
    for(i=0;i<n;i++)
    cout<<d[i]<<endl;


    getch();
    return 0;
    
    //techindetail.com
}
Code language: C++ (cpp)

Other Related Numerical Methods.

  • Gauss Elimination Method
  • Gauss-Seidel Method
  • Bisection Method C++
  • Newton Raphson Method
  • Gauss Jordon Method
  • Regula Falsi Method C++

Post navigation

Previous Previous
LU Decomposition Method C++ Program | Rule Example
NextContinue
Implement Queue using Linked list in C++ Algorithm
Search

  • Home
  • Privacy Policy
  • Disclaimer
  • Sitemap
  • Write for us
  • Contact Us

Copyright © 2025 TechInDetail

Scroll to top
  • Home
  • JavaScript
  • Machine Learning
  • C++
    • C++ Programing
    • Numerical Techniques C++
    • Data Structures C++
    • C++ Programs
  • Typing Guide
  • Blogs
Search